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Abstract 

Currently, considerable research activities are focussing on biochemical, physiological and pathological aspects of the 
creatine kinase (CK) - phosphorylcreatine (PCr) - creatine (Cr) system (for reviews see [1, 2]), but only little effort is 
directed towards a thorough investigation of Cr metabolism as a whole. However,  a detailed knowledge of Cr metabo- 
lism is essential for a deeper  understanding of bioenergetics in general and, for example, of the effects of muscular 
dystrophies, atrophies, CK deficiencies (e.g. in transgenic animals) or Cr analogues on the energy metabolism of the 
tissues involved. Therefore,  the present article provides a short overview on the reactions and enzymes involved in Cr 
biosynthesis and degradation, on the organization and regulation of Cr metabolism within the body, as well as on the 
metabolic consequences of 3-guanidinopropionate (GPA) feeding which is known to induce a Cr deficiency in muscle. 
In addition, the phenotype of muscles depleted of Cr and PCr by GPA feeding is put into context with recent in- 
vestigations on the muscle phenotype of 'gene knockout '  mice deficient in the cytosolic muscle-type M-CK. (Mol Cell 
Biochem 133/134: 51-66, 1994). 
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Abbreviations: Cr - creatine; Crn - creatinine; PCr - phosphorylcreatine; CK - creatine kinase; M-CK - cytosolic 
muscle type CK isoenzyme; Mi-CK - mitochondrial CK isoenzyme; A G A T  - L-arginine: glycine amidinotransferase; 
G A M T  - S-adenosylmethionine: guanidinoacetate methyltransferase; Arg - arginine; Met - methionine; GPA - 3- 
guanidinopropionate = [3-guanidinopropionate; PGPA - phosphorylated GPA; GBA - 3-guanidinobutyrate = [3-gua- 
nidinobutyrate; CPEO - chronic progressive external ophthalmoplegia 

Creatine metabolism 

Although a diagram of the reactions involved in Cr me- 
tabolism (Fig. 1) seems simple, Cr metabolism is compli- 
cated by the fact that most tissues lack one or several of 
the reactions shown, necessitating a transport of inter- 
mediates between the tissues (through the blood) in or- 

der to allow the whole cascade to proceed. L-Arginine: 
glycine amidinotransferase (AGAT),  the first enzyme in 
the two-step biosynthesis of Cr, catalyzes the transfer of 
the amidino group of Arg to glycine to yield L-ornithine 
and guanidinoacetate. The latter compound, by the ac- 
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Fig. 1. Schematical representation of the reactions and enzymes involved in Cr metabolism. The respective enzymes are denoted by numbers: (1) 
L-arginine: glycine amidinotransferase (AGAT; EC 2.1.4.1); (2) S-adenosylmethionine: guanidinoacetate N-methyltransferase (GAMT; EC 2.1.1.2); 
(3) creatine kinase (CK, EC 2.7.3.2); (4) creatininase = creatinine amidohydrolase (EC 3.5.2.10); (5) creatinase = creatine amidinohydrolase (EC 
3.5.3.3); (6) guanidinoacetate kinase = glycocyamine kinase (EC 2.7.3.1); (7) arginase (EC 3.5.3.1); (8) ornithine carbamoyltransferase (EC 2.1.3.3); 
(9) argininosuccinate synthetase (EC 6.3.4.5); (10) argininosuccinate lyase (EC 4.3.2.1); (11) arginine kinase (EC 2.7.3.3); (N) nonenzymatic reaction. 



tion of S-adenosylmethionine: guanidinoacetate me- 
thyltransferase (GAMT), is then methylated at the ami- 
dino group to give Cr [3, 4]. In the course of evolution, 
both AGAT and GAMT seem to have evolved with the 
appearance of the lampreys [5]. While these enzyme ac- 
tivities were not detected in invertebrates, they were 
found in most, but not all vertebrates examined. Never- 
theless, some invertebrate species (e.g. some annelids, 
echinoderms, hemichordates and urochordates, etc.) 
contain significant amounts of Cr, PCr and CK in their 
tissues, especially in spermatozoa [5-9], indicating that 
they either accumulate Cr from their environment or 
from the diet, or that the enzymes for Cr biosynthesis in 
these animals escaped detection so far. 

Many of the lower vertebrates (fish, frogs and birds) 
express both AGAT and GAMT in their livers and often 
kidneys. In mammals, pancreas contains high levels of 
both enzymes, while kidneys have fairly high amounts of 
AGAT, but relatively lower levels of GAMT. On the 
contrary, all mammalian livers tested contain high levels 
of GAMT, but display only low levels of Cr, lack CK ac- 
tivity and consequently also PCr. While livers of cow, 
pig, monkey and man also have high amounts of AGAT, 
livers of common laboratory mammals such as the rat, 
mouse, dog, cat and rabbit were reported to lack AGAT 
activity (for reviews see [5, 10]). Based mostly on these 
latter findings and on the fact that nephrectomized ani- 
mals display a drastically reduced rate of Cr synthesis 
[11,12], it was postulated and is still largely accepted that 
the main route of Cr biosynthesis in mammals involves 
the formation of guanidinoacetate in the kidney, its 
transport through the blood and its methylation to Cr in 
the liver. Cr exported from the liver and transported 
again through the blood may then be taken up by the 
Cr-requiring tissues. 

There is, however, experimental evidence not fully 
agreeing with this view. Immunofluorescence microsco- 
py with antibodies against AGAT revealed significant 
amounts of this enzyme not only in rat kidney and pan- 
creas, but also in liver [13]. The underestimation of rat 
liver AGAT in previous biochemical studies was most 
likely due to the high levels of liver arginase interfering 
with the AGAT assay. Furthermore, AGAT activity was 
detected in heart, lung, spleen, muscle, brain, testis and 
thymus, and the total amount of AGAT in these tissues 
was estimated to even approach the AGAT activity in 
kidney and pancreas [14]. In the rat, the highest specific 
AGAT activity was found in the decidua of pregnant fe- 
males [10], but AGAT is absent from human placenta. 
GAMT activity, on the other hand, was also detected in 
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rat spleen, heart and skeletal muscle as well as in human 
fetal lung fibroblasts and mouse neuroblastoma cells 
[15, 16], but the specific activities in these tissues are 
rather low. The GAMT activity in skeletal muscle, how- 
ever, was calculated to have the potential to synthesize 
all Cr needed in this tissue [16]. Finally, feeding of rats 
and mice with GPA, a competitive inhibitor of Cr entry 
into cells, progressively decreases the concentrations of 
Cr and PCr in heart and skeletal muscle, but has only 
little influence on the Cr and PCr contents of brain [17; 
Riesinger, Haas & Wallimann, unpublished results]. 
One possible explanation is that brain contains its own 
Cr-synthesizing machinery [18]. To conclude, the de- 
tailed contribution of various tissues to total Cr synthe- 
sis on one hand as well as the relevance of guanidinoace- 
tate and Cr transport through the blood and of Cr up- 
take by the cells on the other hand are still not fully un- 
derstood, this being due to a lack of thorough 
investigations and to pronounced species differences. 

A specific saturable, Na § and C1--dependent Cr 
transporter has been described for skeletal muscle, 
heart, fibroblasts, smooth muscle, neuroblastoma and 
astroglia cells, as well as for red blood cells and macro- 
phages [16,19-27]. Recent cloning of the Cr transporter 
cDNA, followed by Northern blot analysis, revealed the 
largest amounts of Cr transporter mRNA in kidney, 
heart and skeletal muscle, somewhat lower levels in 
brain, lung, epididymis and testis, but no Cr transporter 
mRNA at all in uterus, liver, small intestine and spleen 
[27]. 

As far as the tissue concentrations of Cr and PCr are 
concerned, the highest levels were observed in skeletal 
muscle, heart, spermatozoa and photoreceptor cells of 
the retina, somewhat lower amounts in brain, brown 
adipose tissue, intestine, seminal vesicles and seminal 
vesicle fluid, and only low levels in lung, spleen, kidney, 
liver, white adipose tissue, erythrocytes and serum [15, 
28-36]. In skeletal muscles, [Cr] and [PCr] correlate 
with the glycolytic capacity, with resting type 2a and 2b 
fibers containing approx. 32 mM PCr and 7 mM Cr, and 
type 1 fibers containing approx. 16 mM PCr and 7 mM 
Cr [36, 37]. In serum and erythrocytes, on the other 
hand, [Cr] amounts to only 25-50 ~tM and 270-400 txM, 
respectively [35], implying that Cr has to be accumulat- 
ed by most Cr-containing tissues against a large concen- 
tration gradient from the blood. Very likely, Cr uptake 
via the Cr transporter is driven by the electrochemical 
potential difference of extracellular versus intracellular 
[Na+]. 

As indicated in the upper part of Fig. 1, several path- 
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ways have to be considered for the biodegradation of Cr 
and PCr. In vitro, reversible and nonenzymatic cycliza- 
tion of Cr to creatinine (Cr ~ Crn) takes place, with the 
equilibrium of this spontaneous reaction being both pH- 
and temperature-dependent. Cr is favoured at low pH 
and low temperature, while Crn is favoured at higher 
temperatures and in alkaline solutions [38, 39]. In both 
directions, the reaction is monomolecular. Starting with 
pure Cr solutions, 1.0-1.3 % of the Cr per day converts to 
Crn at pH 7.0-7.2 and 38 ~ In vitro studies on the sta- 
bility of PCr revealed that this 'high-energy phosphate 
compound' is acid-labile, yielding Pi and either Cr or Crn 
upon hydrolysis. Both the rate of PCr hydrolysis and the 
ratio of Cr to Crn formed depend on temperature and 
pH and can additionally be influenced in a concentra- 
tion-dependent manner by molybdate (for reviews see 
[7, 40]). 

In contrast to the in vitro situation, studies with 15N- 
labelled Cr and Crn clearly demonstrated that the con- 
version of Cr to Crn in vivo is an irreversible process [41]. 
An almost constant fraction of the body Cr (1.1%/day) 
and PCr (2.6%/day) nonenzymatically converts to Crn 
in vivo, giving an overall conversion rate for the total Cr 
pool (Cr + PCr) of approx. 1.7%/day [42; for a review see 
ref. 10]. Consequently, in a 70 kg-man containing ap- 
prox. 120 g of total Cr, roughly 2g/day are converted into 
Crn and have to be replaced by Cr from the diet or by 
de-novo biosynthesis [10, 42, 43]. Since in contrast to Cr, 
no specific saturable uptake mechanism exists for Crn 
[24], and since Crn, most likely due to its nonionic na- 
ture, is membrane-permeable, Crn constantly diffuses 
out of the tissues into the blood and is excreted by the 
kidneys into the urine [29]. 

20-25 % of the in vivo conversion of PCr into Crn may 
proceed via phosphorylcreatinine (PCrn) as an interme- 
diate [44]. Accordingly, [PCrn] in rabbit white skeletal 
muscle was found to be 0.4% of [PCr]. In addition, com- 
mercial preparations of PCr contain 0.3-0.7% of PCrn. 
Although PCrn was proposed to be an obligatory inter- 
mediate of the CK reaction [45], this idea has to be dis- 
missed due to the lack of any experimental evidence. 

In contrast to the nonenzymatic conversion of Cr and 
PCr to Crn in vertebrates, various bacteria (Alcaligenes, 
Arthrobacter, Clostridium, Flavobacterium, Micrococ- 
cus, and Pseudomonas strains) were shown to (induc- 
ibly) express specific enzymes for the biodegradation of 
Cr and Crn ([46-51]; for further references see [52]). In 
some of these bacteria, for example, creatininase (Crn 
amidohydrolase) first converts Crn into Cr which then is 
further metabolized by creatinase (Cr amidinohydro- 

lase) into urea and sarcosine. Even though creatinase 
was also detected in human skeletal muscle [53], this 
finding awaits confirmation and demonstration of its 
physiological relevance. Very interesting, however, is 
the indication that in Duchenne muscular dystrophy, the 
kinetic properties of human muscle creatinase are af- 
fected [54]. 

An important aspect of Cr metabolism to add is that in 
man, the daily utilization of methyl groups for Cr syn- 
thesis (in the GAMT reaction) and, consequently, also 
the daily loss of methyl groups due to Crn (and Cr) ex- 
cretion approximately equal the daily intake of 'labile' 
methyl groups (Met + choline) on a normal, equilibrat- 
ed diet containing Met and choline [55]. Even when de 
novo Met biosynthesis is taken into consideration, Cr 
biosynthesis still accounts for approx. 70% of the total 
utilization of 'labile' methyl groups. It might therefore 
be assumed that methyl group availability becomes lim- 
iting for Cr biosynthesis, at least under some physiolog- 
ical or pathological conditions. This is, actually, not the 
case, since a deficit in 'labile' methyl groups in man will 
normally be compensated by increased de novo Met 
biosynthesis. 

Regulation of creatine metabolism 

Despite the relatively simple scheme of Cr metabolism 
(Fig. 1), a variety of potential regulatory mechanisms 
have to be considered (for an extensive review see [10]), 
for instance allosteric regulation, covalent modification 
or alterations of expression of enzymes involved in Cr 
metabolism, or changes in the diffusion and transport 
properties (membrane barriers, transport proteins, 
blood transport) of intermediary metabolites. 

Formation of guanidinoacetate is rate-limiting for Cr 
biosynthesis (see [10]). Consequently, the AGAT reac- 
tion is the most likely control step in the pathway, a hy- 
pothesis that has been proven by a great deal of experi- 
mental work. Most important in this respect is the feed- 
back repression of AGAT by Cr, the endproduct of the 
pathway. An increase in endogenous or exogenously 
supplied Cr causes a parallel decrease in the mRNA 
content, the enzyme level, as well as the specific activity 
of AGAT, suggesting regulation of AGAT expression at 
a pretranslational level ([56, 57]; for a review see [10]). 
Feedback repression of AGAT by Cr is most pro- 
nounced in kidney and pancreas, the main tissues of gua- 
nidinoacetate formation, but is also observed in the de- 
cidua of the pregnant rat (see [10]). Cyclocreatine, N- 



acetimidoylsarcosine and N-ethylguanidinoacetate also 
display repressor activity like Cr, while Crn, PCr, N-me- 
thyl-3-guanidinopropionate and a variety of other com- 
pounds are ineffective [10, 58, 59]. L-Arg and guanidi- 
noacetate have only 'apparent' repressor activity, since 
they have no effect on AGAT expression by themselves, 
but are readily converted into Cr which then acts as the 
true repressor. Since the half-life of AGAT in rat kidney 
is two to three days [56], the changes in the AGAT levels 
described here are rather slow processes, thus only al- 
lowing for long-term adaptations. Furthermore, immun- 
ological studies suggested the presence of multiple 
forms (isoenzymes?) of AGAT in rat kidney, of which 
only some are repressible by Cr [60]. 

The expression of AGAT was suggested to be mod- 
ulated not only by Cr, but also by dietary and hormonal 
factors (for reviews see [10, 61]). Dietary deficiencies 
(fasting, protein-free diets) and diseases (vitamin E defi- 
ciency, spreptozotocin-induced diabetes; [62, 63]) de- 
crease AGAT levels in liver, pancreas and kidney. Dur- 
ing fasting and in vitamin E deficiency, however, at least 
part of the observed effect may be explained by the in- 
creased blood levels of Cr ([12]; see also [10]). Further- 
more, kidney AGAT activity is reduced upon thyroidec- 
tomy or hypophysectomy of rats [64]. The original 
AGAT activities can be restored by injection of thyrox- 
ine or growth hormone, respectively. In contrast, injec- 
tions of growth hormone into thyroidectomized rats and 
of thyroxine into hypophysectomized rats are without 
effect, implying that both hormones are necessary for 
maintaining proper levels of AGAT in rat kidney. Since 
enzyme activity, protein and mRNA contents are always 
affected to the same extent, regulation of AGAT ex- 
pression by thyroid hormones and growth hormone also 
occurs at a pretranslational level, very similar to the 
feedback repression by Cr [57, 65]. Growth hormone 
and Cr have an antagonistic action on AGAT expres- 
sion, as evidenced by identical mRNA levels and enzy- 
matic activities of kidney AGAT in rats fed Cr and in- 
jected with growth hormone as compared to rats receiv- 
ing neither of these compounds [57]. Finally, AGAT lev- 
els in rat testes and decidua are presumably under the 
control of sex hormones, with estradiol and diethylstil- 
besterol decreasing and testosterone increasing the 
AGAT levels (see [10]). 

In contrast to the repression of AGAT, Cr does not 
interfere with the expression of GAMT or arginase in 
liver. Cr, Crn and PCr also do not act as allosteric regu- 
lators of the enzymatic activities of AGAT or GAMT in 
vitro [10], suggesting that feedback regulation is 
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achieved exclusively by the action of Cr on the rate of 
AGAT biosynthesis. AGAT is, however, very efficiently 
inhibited by ornithine, a fact that seems to be patholog- 
ically relevant [10, 66]. In gyrate atrophy of the choroid 
and retina, for instance, plasma ornithine concentra- 
tions are increased 10-20-fold due to deficiency of L-or- 
nithine: 2-oxo-acid aminotransferase [67]. The in- 
creased ornithine concentrations, in turn, inhibit AGAT 
and thus decrease the rate of guanidinoacetate forma- 
tion from Arg, resulting in drastically decreased serum 
concentrations of Cr and Crn [68]. 

As far as regulation of transport processes involving 
intermediates of Cr metabolism is concerned, many po- 
tential points of attack have to be considered, for in- 
stance uptake of Arg into mitochondria, release of gua- 
nidinoacetate from pancreas and kidney, uptake of gua- 
nidinoacetate into and release of Cr from the liver, up- 
take of Cr into the tissues, and penetration of ATP, ADP 
and PCr through the mitochondrial membranes. In 
chicken kidney and liver where AGAT is localized in the 
mitochondrial matrix, penetration of L-Arg through the 
inner membrane was found to occur only in respiring mi- 
tochondria and only in the presence of anions such as 
acetate or phosphate [69]. Consequently, the rate of Cr 
synthesis in the chicken may be influenced by the rate of 
penetration of Arg into the matrix space. The uptake of 
blood Cr by muscle was shown to be stimulated by in- 
sulin (see [10]). In contrast, the Cr transporter activity in 
rat and human myoblasts and myotubes is down-regu- 
lated by extracellular Cr [70]. 

The permeability itself as well as changes in perme- 
ability of the outer mitochondrial membrane may be 
critical for the stimulation of mitochondrial 'high-ener- 
gy phosphate' synthesis and for the transport of these 
'high-energy phosphates' between sites of ATP produc- 
tion and ATP utilization within the cell [71, 72]. Changes 
in the permeability of the outer mitochondrial mem- 
brane pore protein (VDAC) may be achieved by 'capac- 
itive coupling' to the membrane potential of the inner 
mitochondrial membrane, leading to a voltage-depend- 
ent 'closure' of the pore (for a review see [73]), or by the 
recently discovered VDAC modulator protein which in- 
creases the rate of voltage-dependent channel closure 
by approximately 10-fold [74]. Since upon stimulation of 
mitochondrial respiration from state 4 to state 3, the 
number of contact sites between mitochondrial inner 
and outer membranes increases (see [73]), capacitive 
coupling between the two membranes may be favoured, 
and the pore protein may be shifted from its open, 
anion-selective to its closed, cation-selective state. 
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Finally, increased Cr levels in the blood cause in- 
creased guanidinoacetate excretion in the urine, pre- 
sumably by inhibiting reabsorption of guanidinoacetate 
by kidney tubules (see [10]). To conclude, the theoretical 
possibilities of regulating Cr metabolism are manifold. 
Practically, the highest rates of Cr biosynthesis are ob- 
served in young, healthy, fast-growing vertebrates in op- 
timal hormonal balance and under anabolic conditions 
with a high-quality, Cr-free food supply [10]. The best 
established regulatory mechanism in Cr metabolism so 
far is feedback repression of AGAT by Cr. An attractive 
further possibility, which is testible more easily now af- 
ter the recent identification and cloning of the Cr trans- 
porter, represents a reversible up- and down-regulation 
of this transporter as a function of dietary Cr intake. 

Interference with creatine uptake 
into muscle 

Muscle phenotype after chronic creatine depletion 

Animal models for cardiac hypertrophy [75, 76] and dis- 
eased human myocardium [77] are characterized by 
lowered overall intracellular [Cr] and [PCr] as well as by 
a higher vulnerability to hypoxia. Consequently, lower- 
ing of the energy reserves for ATP synthesis may render 
muscle more susceptible to failure. The same holds true 
also for a number of skeletal muscle myopathies [78] in 
which a disturbance in transport and handling of Cr is 
indicated. 

Therefore, feeding of experimental animals with Cr 
analogues would seem a promising tool to test whether 
lowered levels of total Cr are related to pathological 
muscle function, and to investigate the physiological 
role of PCr, Cr and CK in intact muscle. In order to pro- 
vide clear-cut answers, an 'ideal' Cr analogue should i) 
either completely inhibit Cr biosynthesis, ii) completely 
prevent Cr uptake by muscle and nerve in vivo, iii) com- 
pletely and specifically inhibit CK activity in vivo, or iv) 
completely replace Cr and PCr, with the phosphorylated 
synthetic analogue possessing markedly different ther- 
modynamic and kinetic properties relative to PCr [10]. 
Unfortunately, none of the Cr analogues studied so far 
fulfils any of these criteria. 

The frequently used Cr analogues 3-guanidinopro- 
pionic acid (~3-guanidinopropionic acid; GPA) and 3- 
guanidinobutyric acid (~-guanidinobutyric acid; GBA) 
both competitively inhibit the Cr transporter activity 
and thus reduce Cr import through the sarcolemma, 

with GBA being somewhat less effective than GPA [10, 
7%85]. Compared to GPA, however, GBA has the ad- 
vantage not to be phosphorylated by CK in vivo [85]. 
Long-term feeding (6-10 weeks) of rats with GPA re- 
sults in a marked decrease in PCr, Cr and ATP levels in 
skeletal muscle to approximately 10, 20 and 50% of nor- 
mal, respectively [83, 86]. At the same time, GPA and its 
phosphorylated counterpart, PGPA, are accumulated at 
high concentrations, especially in white, fast-twitch skel- 
etal muscles. In spite of the severely reduced PCr levels, 
these muscles continue to function reasonably well [79, 
81], i.e. neither the initial peak tension nor the long-term 
steady-state force developed at low workloads are sig- 
nificantly reduced [83]. This, however, does not surprise 
the informed reader: i) Although the levels of PCr are 
decreased drastically, the calculated unidirectional flux 
from PCr to ATP via the CK reaction in resting ana- 
logue-loaded muscle (0.5 gmole  9 g-1. s-l) is still several- 
fold greater than the steady-state ATP turnover rate at 
rest (0.07 gmole  9 g l .  s-S) [83]. And ii), the rate of PGPA 
break-down by CK (0.18 mM- s -1) is still in excess of the 
ATPase rate during a transition from low to high work 
load (0.1 mM. s -1) [87]. This is due to GPA and PGPA 
both serving as substrates for CK to some extent [88]. 
The Vma x values of CK for GPA and PGPA are approxi- 
mately 0.3% and 0.01% of those for Cr and PCr, respec- 
tively [89]. 

Considering these facts, interpretations of results ob- 
tained with GPA-treated animals that have been put for- 
ward, like 'PCr is not essential for steady-state energy 
production' [83] or 'neither PCr nor the activity of CK is 
critical for aerobic metabolism' [81], must be considered 
with well founded dubiety. As a matter of fact, a closer 
look at Cr-depleted muscle reveals considerable devia- 
tions in contractile properties. In Cr-depleted rat dia- 
phragm muscle during a burst of intense muscle activity 
(0.2-s tetanic stimulation every 0.5 s), the maximum iso- 
metric tension, rate of tension development and rate of 
relaxation decrease rapidly to reach a minimum about 
3 s after the onset of activation [90, 91]. In contrast, nor- 
mal muscles show a small decrease in tension and relaxa- 
tion rate but an increase in the rate of tension develop- 
ment under these conditions. Similar findings, although 
interpreted differently, were made with rat skeletal mus- 
cle [83]. During 3-Hz stimulation, hypoxic tibialis ante- 
rior muscle of GPA-treated rats is characterized by a 
rapid decline in peak tension and by the absence of the 
so-called staircase phenomenon [88]. Post-tetanic stim- 
ulation, a common phenomenon seen in normal muscle 
after a 1-s tetanus, is largely reduced in GPA-loaded 



EDL muscle [92]. Furthermore, GPA-loaded soleus 
muscle displays altered isometric twitch characteristics, 
in particular a decrease in the maximum velocity of 
shortening as well as a prolonged half-relaxation time 
[93]. A major effect of Cr depletion on excitation-con- 
traction coupling, specifically on the relaxation rate, is 
observed in hearts of GPA- and GBA-treated animals, 
especially at higher work loads [94, 95]. Long-term feed- 
ing of rats with GPA and GBA also causes a decrease in 
the cytosolic phosphorylation potential [83, 85] and a 
decrease in the thermodynamic efficiency of cardiac en- 
ergy metabolism [85]. Finally, the effects of Cr depletion 
can be markedly exacerbated by superimposing a thyro- 
toxicosis, e.g. by simultaneously feeding GPA and thy- 
roid powder. Much more severe muscle degeneration is 
observed under these conditions than with GPA feeding 
or thyroid powder supplementation alone, indicating 
that high concentrations of Cr and PCr are essential for 
the maintenance of muscle integrity during periods of 
metabolic stress [96]. 

Many of the findings listed above indicate that muscle 
relaxation is affected in analogue-treated animals. This 
is most likely due to an impairment of proper Ca 2§ hand- 
ling, since i) muscle relaxation afforded by Ca2+-seques - 
tration into the sarcoplasmic reticulum (SR) depends 
critically on a highly negative AG for ATP hydrolysis in 
the cytosol [97, 98], and since ii) the AG for ATP hydro- 
lysis is less negative in analogue-loaded than in control 
muscle, due mainly to an increase in [free ADP] [83, 85]. 
Fully in line with this interpretation, a fraction of the cy- 
tosolic CK is bound to the SR and is functionally cou- 
pled to the SR-Ca2+-ATPase [99, 100]. In this location, 
CK was proposed to locally regenerate ATP and thus to 
maintain a high phosphorylation potential in the intim- 
ate vicinity of the Ca 2+ pump of the SR [1]. 

Metabolic adaptation of  muscle chronically depleted 
of  creatine 

The altered contractile properties of muscle, chronically 
depleted of Cr, are reflecting the effects of the defect 
itself (Cr, PCr and thus 'high-energy phosphate' defi- 
ciency) plus a superimposition of effects caused by com- 
pensatory, qualitative and quantitative adaptational 
changes induced by the Cr-depletion. The astonishing 
plasticity of muscle to adapt to specific requirements un- 
der physiological conditions is well documented and can 
be nicely demonstrated by chronic stimulation of fast 
glycolytic muscle fibers which are readily converted into 
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slow oxidative fibers [101, 102]. Obviously, this muscle 
plasticity can also be provoked by artificial stimuli. In 
the case of Cr-depletion due to GPA or GBA feeding, 
fast-twitch skeletal muscle fibers adapt to a 'high-energy 
phosphate' deficit i) by reducing fiber diameter, result- 
ing in reduced diffusion distances for 'energy' metabo- 
lites [103], ii) by increasing aerobic capacity [104, 105], 
iii) by decreasing their glycolytic potential, with glyco- 
gen content increasing at the same time, iv) by increas- 
ing the proportion of slow-twitch fibers in skeletal mus- 
cle [103], and v) by shifting the myosin isoform pattern 
from fast to slow isomyosins [106]. The finding of a simi- 
lar shift in cardiac muscle from the faster ventricular 
myosin V~ to the slower V 2 isoform [84] contrasts with an 
earlier study where no changes in ventricular isoforms 
were reported [106]. 

Consistent with the notion that the oxidative capacity 
of Cr analogue-treated muscle is increased, long-term 
GPA feeding causes a 60-67% increase in cytochrome c 
mRNA in rat soleus and white quadriceps muscle [104] 
as well as a 40-50% increase in cytochrome c, citrate 
synthase and hexokinase activity in rat plantaris muscle 
[105]. Furthermore, a 50% increase in the major glucose 
transporter isoform in skeletal muscle, GLUT-4, was 
seen in Cr-depleted muscle [105]. Since GLUT-4 is the 
major determinant of a muscle's maximal insulin-stim- 
ulated glucose transport capacity, all these findings 
point to a metabolic adaptation to increase the availabil- 
ity of energy sources (ATP) for proper cell function. Fi- 
nally, AMP deaminase activity is significantly reduced, 
specifically in fast-twitch muscle fibers, to a level nor- 
mally found in slow-twitch muscles [107]. 

To conclude, chronic depletion of Cr in muscle clearly 
results in a multiplicity of stratified metabolic adapta- 
tions. However, the very interesting questions of how 
and by which signalling cascades a low-energy stress sit- 
uation is transmitted to bring about the induction of 
compensatory measures still await an answer. On the 
other hand, much care should be taken in the interpreta- 
tion of results obtained with animal models of long-term 
Cr depletion. 

In order to circumvent the problem of metabolic and 
structural adaptations, an acute ex vivo model has re- 
cently been established using perfusion of isolated 
hearts with 150 mM GPA [108]. In this short-term mod- 
el, a linear accumulation of PGPA is accompanied by a 
30% decrease of PCr over a 2 hr period. The increase in 
Pi and the decrease in ATP which occur concomitantly 
with PGPA accumulation indicate that ATP synthesis is 
not keeping up with ATP demand. Short-term GPA per- 
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fusion reduces the cardiac frequency and developed ten- 
sion by approx. 40% and 10%, respectively. Perfusion 
with 150 mM mannitol instead of GPA results in a 15% 
decrease in cardiac frequency, with a similar decrease in 
ATE increase in intracellular pH and a smaller rise in Pi 
being observed with mannitol compared to GPA. These 
results suggest that some of the effects observed with the 
acute GPA model are due to the hyperosmolarity 
caused by 150 mM GPA. Therefore, the scientific merit 
of this method of Cr depletion has still to be evaluated 
thoroughly. 

Changes of mitochondrial structure seen in 
creatine-depleted muscle 

As in vivo, muscle cells in culture seem to depend on Cr 
for proper differentiation and cell function [109]. Culti- 
vation of adult rat cardiomyocytes in vitro in a Cr-defi- 
cient medium or in the presence of GPA results in 
marked morphological changes, mainly affecting mito- 
chondria [110]. After 3 4  days in culture, a population of 
enlarged, rod-shaped mitochondria with characteristic 
crystalline intramitochondrial inclusions appears in 
these cells. This phenomenon is fully reversible if the 
cell culture medium is supplemented with Cr. The ap- 
pearance of highly ordered intramitochondrial inclu- 
sions correlates with a low intracellular total Cr content 
of the cardiomyocytes [110]. Most importantly, the large, 
rod-shaped mitochondria react very strongly with spe- 
cific anti-mitochondrial creatine kinase (Mi-CK) anti- 
bodies in immunofiuorescence experiments. Higher- 
magnification immuno-electron microscopy showed 
that, in fact, the highly ordered intramitochondrial in- 
clusions are heavily enriched for Mi-CK [110]. 

Very similar intramitochondrial inclusions have been 
observed in several animal models: in skeletal muscle of 
rats fed with a diet containing 1-2% GPA [111-113]; in 
adult ventricular cardiomyocytes, cultured for six days 
in serum-supplemented medium, followed by serum- 
free medium containing the o~-adrenoceptor agonist, 
phenylephrine (stimulating protein synthesis) [114]; in 
ischemic rat skeletal muscle in vivo [115]; in organ cultur- 
es of rat diaphragm, most likely suffering from anoxic 
conditions [116]; as well as after acute in vivo adminis- 
tration of uncouplers of oxidative phosphorylation [117]. 
It is tempting to speculate that all of these intramito- 
chondrial inclusions contain Mi-CK as main or even sole 
component [110]. 

GPA administration to rats for 6-10 weeks induces 

two types of intramitochondrial inclusions, mainly seen 
in enlarged subsarcolemmal mitochondria of red skele- 
tal muscle and diaphragm [111-113,118]; long ribbon-like 
peripheral inclusions (Fig. 2A), and regular staples of 
intracristae inclusions often arranged in packages con- 
sisting of two or four distinct tracks (Fig. 2B). Each track 
contains periodically arranged 'material' that is fitted 
between or connects two adjacent cristae membrane 
folds (Fig. 2B). The ensheathment of the periodic mate- 
rial by the cristae membrane can most clearly be seen at 
the ends of individual tracks (Fig. 2B, arrows). Often, if 
the tracks are very long, they tend to circularize or break 
(Fig. 2B, arrowhead). Detailed inspection of high-mag- 
nification electron micrographs suggests that the inclu- 
sions are generated by the close apposition of two folds 
of the mitochondrial inner membrane, with the crystal- 
line material accumulating in between, first as one single 
layer [119] and then building up to more compact struc- 
tures [111-113, 115, 118] (See also Fig. 2). The findings 
that i) the highly symmetrical octameric Mi-CK mole- 
cules are able to link two membranes and to stabilize 
such membrane contacts in vitro [120] and that ii) octa- 
meric Mi-CK under certain experimental conditions 
'polymerizes' to form ribbon-like linear filaments [121] 
suggest that the intramitochondrial inclusions seen in 
GPA-treated experimental animals, like those observed 
in Cr-depleted cardiomyocytes in culture, also consist 
mainly of Mi-CK. This hypothesis has recently been cor- 
roborated by preliminary immunogold labelling experi- 
ments [118, Gorman et al., unpublished]. 

Mitochondrial creatine kinase is a major constituent 
of pathological inclusions seen in biopsies of  
human patients with mitochondrial myopathies 

Most interestingly, mitochondrial inclusions are fre- 
quently seen in patients with so-called mitochondrial 
encephalomyopathies. These mitochondrial myopathy 
diseases [122] are characterized by the presence of muta- 
tions in the mitochondrial DNA which affect in some 
way or another ATP production by oxidative phospho- 
rylation [123-125]. These defects are particularly re- 
vealed in tissues such as skeletal muscle, heart and brain 
which rely the most on oxidative phosphorylation. The 
structural hall-mark of these syndromes is the presence 
of 'ragged red muscle fibers' in muscle biopsies [126, 
127]. Characteristic aspects of 'ragged red muscle fibers' 
are an accumulation of enlarged and abnormal mito- 
chondria and the occurrence in these mitochondria of 
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Fig. 2. GPA-induced morphological changes in muscle mitochondria. Intramitochondrial crystalline inclusions were induced in rat muscle by 10 
weeks of supplementation of the normal rat food with 2% (w/w) of 3-guanidinopropionic acid (GPA), a creatine uptake inhibitor. A) Rat diaphragm 
muscle with enlarged mitochondria and inclusions located beneath the mitochondrial outer membrane (peripheral inclusions). B) Rat diaphragm 
muscle with enlarged roundish mitochondria and inclusions located between cristae membranes (intracristae inclusions). Note pairs of two or four 
'ribbons' appearing either as short stacks or alternatively as long structures that are often curved or kinked (arrowhead). At the end of some of the 
ribbons, the cristae membrane enveloping the crystalline material can be identified (arrows). Bars = 0.4 gm (courtesy of C. Haas and Dr. I. Riesinger, 
see [118]). 
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Fig. 3. Intramitochondrial inclusions in biopsies of patients with mitochondrial myopathies consist mainly of mitochondrial creatine kinase. A 
section of a skeletal muscle biopsy (from m. quadriceps) from a patient with chronic progressive external ophthalmoplegia (CPEO) was stained with 
specific anti-mitochondrial creatine kinase (Mi-CK) antibodies, followed by gold-conjugated second antibody. Note the strong and specific immu- 
nostaining of the intramitochondrial inclusions even after standard EM embedding techniques. Bar = 0.1 I.tm (courtesy of Prof. Ad M. Stadhouders, 
see [132]). 

highly ordered crystal-like inclusions [128-130]. These 
crystals are very reminiscent of those seen in the experi- 
mental  GPA-animal  model described above. 

The structural features of the crystalline intramito- 
chondrial inclusions, observed in biopsy material mostly 
f rom patients with chronic progressive external oph- 
thalmoplegia (CPEO),  have been studied in great detail 

by electron microscopy of oriented thin sections [131]. 
Analysis of the electron micrographs by image proces- 
sing revealed regularly packed, square-shaped building 
blocks of 10 nm side width and a central channel [132], 
features matching the structural characteristics of isolat- 
ed Mi-CK octamers [121]. Recent  immunogold labelling 
experiments showed that the mostly proteinaceous in- 



clusions in CPEO patients react very strongly with spe- 
cific anti-Mi-CK antibodies [132, 133] (see Fig. 3). 

Functional aspects of  intramitochondrial 
Mi-CK-containing inclusions 

An interesting aspect of a metabolic adaptation has re- 
cently been elucidated. In skeletal muscles of patients 
with defects in and low expression of mitochondrial 
genes involved in oxidative phosphorylation, nuclearly 
encoded mitochondrial proteins involved in ATP pro- 
duction are overexpressed to compensate for the respi- 
ratory deficiency [134]. Thus, one would like to propose 
that the Mi-CK-rich inclusions seen in patients with mi- 
tochondrial myopathies are generally formed as a re- 
sponse to a chronic cytosolic 'low energy' stress situa- 
tion. It will be extremely interesting to find the sensors 
as well as signalling factors responsible for the induction 
of these compensatory mechanisms. Whether the Mi- 
CK inclusions in fact serve a compensatory ameliorating 
function, i.e. by increasing the export of 'high-energy 
phosphates' from mitochondria to the cytosol (in- 
creased gmax/Km ratio), remains to be elucidated. How- 
ever, this idea would be fully compatible with the pro- 
posed function of Mi-CK as an energy channelling mole- 
cule [2,135]. The metabolic compensation hypothesis is 
also supported by enzyme histochemical methods, 
showing that Mi-CK is enzymatically active even within 
fully grown intramitochondrial crystals [132]. At an ad- 
vanced stage, on the other hand, the crystallization of 
massive amounts of Mi-CK within cristae folds or be- 
tween inner and outer mitochondrial membranes may 
have to be considered pathological itself, for it is difficult 
to envisage how such crystals could improve functional 
coupling of Mi-CK with the adenine nucleotide trans- 
locator of the inner and with porin of the outer mem- 
brane [2, 135, 136]. 

Transgenic null mutants for cytosolic M-CK reveal 
similar phenotype and metabolic adaptation as seen 
in creatine-depleted muscle 

Very recently, a null mutation for the cytosolic muscle 
CK (M-CK) gene was created in transgenic mice [137]. 
These M-CK knockout mutant mice, despite the com- 
plete absence of M-CK mRNA as well as active M-CK 
enzyme, still express more or less normal levels of Mi- 
CK and show normal concentrations of free ATR PCr 
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and Pi in their resting muscles. Most strikingly, the well- 
known symmetrical changes of [PCr] and [Pi] (a de- 
crease in one is paralleled by an increase in the other) 
during exercise and recovery are similar in the mutants 
and controls. Nevertheless, upon closer examination of 
muscle performance, a clear physiological phenotype 
becomes apparent. The mutant mice lack the ability to 
perform burst muscle activity, that is, although their 
muscles reach normal initial peak tension, they are un- 
able to maintain it for any length of time. Transgenic 
mice lacking M-CK compensate for the deficiency by 
structural and metabolic adaptations in their muscles, 
e.g. by increasing mitochondrial capacity and glycogen 
content in fast muscle fibres. The expansion of the mi- 
tochondrial network in mutant fast-twitch fibres, e.g. in 
the subsarcolemmal and intermyofibrillar space, results 
in a considerable reduction of diffusion distances be- 
tween mitochondria and myofibrils. These findings 
point to an adaptation towards increased energy trans- 
port mediated directly via ATP and ADP [137]. 

Thus, M-CK-deficient transgenic mice (with no cyto- 
solic CK, but normal substrate concentrations; [137]) 
and GPA- or GBA-treated animals (with normal CK ac- 
tivity, but decreased substrate concentrations [82, 83, 
90-92]) display a notably similar phenotype as far as 
physiological muscle performance is concerned. In both 
animal models, i) the initial peak muscle tension reach- 
ed is normal, ii) the peak force, however, cannot be 
maintained and declines rapidly after the onset of mus- 
cle stimulation, i.e. muscle burst activity is affected, and 
iii), marked compensatory adaptive changes take place, 
leading to an improvement of endurance performance 
of the muscles [137]. This muscle phenotype is exactly 
what one would expect if the high-energy phosphate 
buffering function, facilitated by PCr and cytosolic CK, 
were hampered. Therefore, both animal models provide 
additional confirmation for the postulated role of cyto- 
solic M-CK as an immediate 'high-energy phosphate' 
buffer for short-time muscle activity (see [1, 136]). 

However, the enhancement in aerobic capacity of M- 
CK-deficient mice is afforded mainly by an increase in 
the number of relatively large intermyofibrillar mito- 
chondria, and only rarely are intramitochondrial inclu- 
sions seen [137]. By contrast, in GPA-treated animals, 
grossly enlarged mitochondria accumulate mostly in a 
clustered fashion in the subsarcolemmal space and fre- 
quently display prominent intramitochondrial crystals 
[111-113, 115, 118] (see Fig. 3). Although in the M-CK 
'knock-out' animals, the fast-twitch type 2 muscle fibers 
have an increased intra-myofibrillar mitochondrial vol- 
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ume and an increased glycogenolytic/glycolytic poten-  
tial, and in spite of  the adapta t ion  of  the muscles to en- 
durance  performance,  no  signs of  muscle fiber-type con- 
version, as seen in GPA- t rea ted  animals, have been  ob- 
served in M-CK-def ic ient  mice [137]. 

work  was suppor ted  by the Swiss Nat ional  Science 
Founda t ion  (SNF grant  31-33907.92 to T.W.), a postdoc-  
toral SNF training grant  (823A-037106 to M.W.), the 
Swiss Society for  Muscle Diseases and the He lmut  Hor-  
ten Foundat ion.  

Concluding remarks 

The  accumula t ion  of  the unique type of  in t rami tochon-  
drial inclusions described above is a c o m m o n  denom-  
inator  seen in a variety of  diseases l inked to defects in 
mitochondria l  energy  metabol ism as well as in animal 
models  with a depleted energy  status. Since these inclu- 
sions contain Mi-CK as their major  c o m p o n e n t  or may  
even be ' pu re '  Mi-CK protein  crystals, their occurrence  
in pa tho logy  points to the physiological impor tance  of  
the CK/PCr  system for cellular energetics. These  find- 
ings fur ther  impose the intriguing quest ion of  how a de- 
fect in cellular energy  metabol i sm (substrate or  enzyme  
deficiency) can regulate and influence muscle plasticity 
towards long- term structural and metabol ic  adaptat ion.  

Seen in the b road  context  of  system physiology, organ 
and cell function, the pathways and regulat ion of  Cr bio- 
synthesis and degradat ion  are very fascinating, but  un- 
expectedly complex, with m a n y  basic quest ions still 
open. Cr and CK, however ,  have managed  to make  a 
come-back  and obtain at least a glimpse at the lime-light 
of  m o d e r n  biological science. The  surprising findings 
made  with M - C K  null-mutant  transgenic mice and the 
results to be expected in the near  future  with ' knock-ou t '  
mutants  of  the o ther  CK isoenzymes,  which most  likely 
also will display distinct phenotypes ,  have already pro-  
vided a deeper  insight in CK function in v ivo  and are 
likely to shed new light on Cr, PCr  and CK funct ion in 
the intact animal, respectively. A b o v e  all, these types of  
experiments  will keep the next genera t ion  of  cell, organ 
and system physiologists (if there are any left?) quite bu- 
sy in the future. 
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